LBNE Beam Alignment Studies

Mary Bisha (BNL)

LBNE Beam Alignment Studies 3/3/10

Mary Bishai (BNL)

March 3, 2010

Motivation

LBNE Beam Alignment Studies

Mary Bisha (BNL)

The alignment of the neutrino beamline at FNAL with the FD is a critical component of civil constructions

- The NuMI beamline was required to be aligned to 0.1mradians
- What is the requirement for LBNE that satisfies the physics?

The LBNE beam

LBNE Beam Alignment Studies

Simulation details (NOT FINAL DESIGN!):

Beam: 120GeV, $\sigma = 1.5$ cm

Target: Cylindrical, carbon, 6mm radius, 80cm length, 2.1g/cm³

Horns: 2 Al NuMI horns, 6m apart, 250kA current both. Decay pipe: Cylindrical, vacuum, 2m radius, 280m length.

dusel120. numu CC. sin2theta13=0.04. 1300km/0km

Kinematics of neutrino production

LBNE Beam Alignment Studies

Mary Bisha (BNL)

$$egin{align} \mathsf{E}_{
u} &= rac{\mathsf{0.43E}_{\pi}}{1 + \gamma_{\pi}^2 heta^2} \ rac{\mathsf{dN}}{\mathsf{d}\Omega} &\sim rac{1}{\pi} (rac{\gamma^2}{1 + \gamma_{-}^2 heta^2}) \end{aligned}$$

For example

For $\theta_{\nu} < 1$

E_{pi} (GeV)	$ heta_ u$ mrads	$E_{ u} \; GeV$
6.0	0	2.580
6.0	1	2.575
6.0	10	2.180
14	0	6.02
14	1	5.96
14	10	3.01

In the region $E_{\nu} < 6 \mbox{GeV}, \, E_{\nu}$ differences are < 1% up to 1mrad off-axis

Going off-axis - perfect focusing

LBNE Beam Alignment Studies

Mary Bisha (BNL)

Going off-axis - real focusing

LBNE Beam Alignment Studies

Mary Bisha (BNL)

High energy rates DO NOT decrease as expected off-axis

Pion beam divergance and focusing

LBNE Beam Alignment Studies

Mary Bisha (BNL)

90% of the pions produced from the target are emitted through the sides \Rightarrow there is a "natural" divergance to the pion beam from the target shape. $\theta_\pi > 6 \text{mm}/70 \text{cm} = 9 \text{mrad}$.

From the FLUKA08 simulation:

Focusing efficiency

LBNE Beam Alignment Studies

Mary Bisha (BNL)

Focusing not as efficient for high energy pions

⇒ high energy pions peak slightly off-axis

Off-axis spectra $u_{\mu}, u_{ m e}$

LBNE Beam Alignment Studies

Mary Bisha (BNL)

Discussion points

LBNE Beam Alignment Studies

Mary Bisha (BNL)

- \blacksquare At 1mrad offaxis, 10 % change in E_{ν} around 6 and 20 GeV. This is < 2-3 % change in NC contamination in ν_{e} appearance analysis.
- Can we reduce the divergance of the pion beam off-axis by changing the target shape?
- Can we use the high energy tunes with the FD to FIT FOR THE off-axis beam and thereby eliminate need for physical alignment to better than 1mrad?